
Applications Performance Under OSF/l AD and
SUNMOS on Intel Paragon XP/S-15

Subhash Sainil and Horst D. Simon2

Numerical Aerodynamic SimulationFacility
NASA Ames Research Center

Mail Stop T 27A-l
Moffett Field, CA 94035-1000

415-604 - {4343,3957} - {phone,fax}
saini@nas.nasa.gov

Abstract

On Paragon, two operating systems are available: (a) OSF/l AD, and (b) SUNMOS. The
chief drawbacks of OSF/l AD are (a) OSF/1 AD takes about 8 MB of memory on each node
of the Paragon, (b) messages can be sent only at a bandwidth of 30-35 MB per second
compared to 200 MB per second peak advertised rate, (c) latencies are on the order of 100
microseconds using Intel NX calls under OSFl/ AD. All these drawbacks can be minimized
by using SUNMOS. SUNMOS takes only 250 KB of memory on each node and can send
messages at bandwidth of 170 MB per second with latencies of 70 microseconds. We have
measured the performance of applications under OSF/1 AD and SUNMOS and found .that
under OSF/1 AD, performance does not scale as the number of nodes increases, whereas
under SUNMOS it seems to scale because of higher communication bandwidth.

Keywords: Benchmarks, applications,performance,operating system, BLAS. '

Invited to submit for publication in Journal of Supercomputing

Earlier version published in Proceedings of SC '94, Washington D.C.

1. Subhash Saini is an employee of Computer Sciences Corporation. This work was funded through NASA
contract NAS 2-12961. Also a corresponding author.

2. Horst D. Simon is an employee of Silicon Graphics Inc.

1.17

1. Introduction

The Numerical Aerodynamic Simulation (NAS) Program, located at NASA Ames
Research Center, is a pathfinder in high perlormance computing for NASA and is dedicated to
advancing the science of computational aerodynamics. One key goal of the NAS organization
is to demonstrate by the year 2000 an operational computing system capable of simulating an
entire aerospace vehicle system in one to several hours. It is currently projected that the
solution of this Grand Challenge problem will require a computer system that can perlorm
scientific computations at a sustained rate approximately 1000 times faster than 1990
generation supercomputers. Most likely such a computer system will employ hundreds or
even thousands of powerful RISC processors operating in parallel.

NAS currently supports two CRAY C90 systems: a TMC CM-5; the HPCC cluster
comprising 16 SGI Power Challenges; 2 HP PA 7200; 2 ffiM RS 6000/590 workstations; an
IBM SP2 and Intel Paragon; 250 SGI workstations (R2000, R3000, and R4000), and 95 Sun
workstations. The CM-5 was decommissioned on March 31, 1995 and the Intel Paragon is
scheduled to be decommissionedon July 31,1995.

The NAS Division received an Intel TouchstoneSigma prototype model Paragon XP/S-15
in February 1993. It was found that perlormance of many applications including the assembly
coded single node BLAS 3 routine DGEMM [Anderson et al. 1992] was lower than the
perlormance on Intel iPSC/860. This finding was quite puzzling since the clock of the
microprocessori860XP used in theParagonis 25%faster than the microprocessori860XR
used in the Intel iPSC/860 [Intel 1991a]. It was also found that the performance of the NAS
Parallel Benchmarks (NPB) [Bailey et al. 1991, 1993, 1994; Saini and Bailey 1995] is
enhanced by about 30% if they are run for second time in a DO loop. Furthermore, the
performance of DGEMM was identical for the first run and the second run on a service node,
but on a compute node the performance of the second run was about 40% better than the first
run. These anomalies in the performance on the Paragon led us to investigate the problem in
more detail. This, in turn, led us to propose a method of dynamic allocation of memory that
increases the performance of the applicationsby about 30% to 40% [Saini and Simon 1993a,
1993b, 1993c, 1994].

By November 1993, it was realized that the perlormance of the applications is very much
limited by two mains factors (a) high latency (120 microseconds), and (b) low
communications bandwidth (30 - 35 MB per second). The optimal use of the Paragon was
also limited by the fact that the micro kernel and Open Software Foundation (OSF)/1 AD
[Zajcew 1993;Loeppere 1993]server takes 8 MB per node, thereby leaving only 8 MB for the
user application. On the other hand, there is another operating system available for the
Paragon, tailored to the needs of applicationsrequiring a large volume of communication: the
Sandia University of New Mexico operating system (SUNMOS, [Maccabe et al. 1993;
McCurley 1993D. The latency under SUNMOSis 70 microsecondsand bandwidth is 170MB
per second. Also, SUNMOS needs only 250 KB of memory per node, thereby making 15.8
MB of memory available for the user application. Additionally, there is no degradation in

2.17

performance associated with using static allocation of memory.In view of this, it was decided
to port, test and evaluate the performance of SUNMOSon the NAS Paragon. In January 1994,
memory per node was upgraded from 16 MB to 32 MB.

In Section 2 we give a brief overview of the Paragon system. Section 3 gives some details
on operating systems available on Paragon. Section 4 gives the description of the applications
we have studied under OSF/1 AD and SUNMOS. Section 5 describes the methodology used.
Section 6 presents results and discussion. Lastly, Section 7 contains the conclusions of the
paper.

2. Overview of the Paragon

2.1. The i860 XP Microprocessor

The Paragon system is based on the 64 bit i860 XpTM microprocessor [Intel 1991a] by
Intel. The i860 xpTM microprocessorhas 2.5 million transistors in a single chip and runs at 50
MHz. The theoretical speed is 100 MFLOPS in 32 bit floating point and 75 MFLOPS for 64
bit for floating point operations. The i860 xpTM features 32 integer address registers with 32
bits each. It has 32 floating point registers with 32 bits each. The floating point registers can
also be accessed as 16 floating point registers with 64 bits each or 8 floating point registers
with 128 bits each. Each floating point register has two read ports, a write port and two-
bidirectional ports. All these ports are 64 bits wide and can be used simultaneously. The
floating point registers serve as input to the floating point adder and multiplier. In vector
computations, these registers are used as buffers while the data cache serves as vector
registers. The i860 xpTM microprocessor has 16 KB of instruction cache and 16 KB of data
caches. The data cache has a 32 bit path to the integerunit and 128bit data path to the floating
point unit. The i860 xpTM has a number of advanced features to facilitate high execution
rates. The i860 xpTM microprocessor'sfloatingpointunit integratessingle-cycleoperation,
64 bit and 128 bit data paths on chip and a 128 bit data path to main memory for fast access to
data and transfer of results. Floating point add, multiply and fetch from main memory are
pipelined operations, and they take advantage of a three-stage pipeline to produce one result
every clock for 32 bit add or multiply operations and 64 bit adds. The 64 bit multiplication
takes two clocks.

2.2. NAS Intel ParagonXP/S-15

A single node of the Paragon XPIS-15 [Intel 1994] consists of two i860 xpTM
microprocessors: one for computation and the other for communication. The compute
processor is for computation and the communicationprocessor handles all message-protocol
processing thus freeing the computation processor to do computations. Currently, the
communication processor is not used in the NAS Paragon. Each compute processor has 32
MB of local memory but atNAS only about 24 MB is availablefor applications, the rest being
used for the micro kernel, OSF server and systembuffers.

The NAS Paragon has 256 slots for nodes. Slots are given physical node numbers from 0

3- 17

through 255. Slots are physically arranged in a rectangular grid of size 16 by 16. There are 8
service nodes; four of them have 16 MB of memory each and the other four have 32 MB of
memory each. Column 0 and column 14 have no physical nodes. The service partition
contains 8 nodes in the last column. One of these service nodes is a boot node. This boot node
has 32 MB of memory and is connected to aRedundant Array of Independent Disks-1 (RAID-
1). The compute partition has 208 nodes which occupy columns 1 through 13. Compute
processors are given logical numbers 0 through 207. Compute processors are arranged in a 16
by 13 rectangular grid. The 227 nodes are arranged in a two-dimensional mesh using
wormhole routing network technology.The four service nodes comprise the service partition
and provide an interface to the outside world, serving as afront end to the Paragon system.
Besides running jobs on the compute nodes, the service nodes run interactive jobs, such as
shells and editors. They appear as one computer running UNIX.

Theoretical peak performance for 64 bit floating point arithmetic is 15.6 GFLOPS for the
208 compute nodes. Hardware node-to-nodebandwidth is 200 MB per second in full duplex.

The nodes of the NAS Paragon are organized into groups called partitions [Intel 1994].
Partitions are organized in a hierarchical structure similar to that of the UNIX file system.
Each partition has apathname in which successivelevels of the tree are separatedby a periods
("."), analogous to "I" in the UNIX file system. A subpartition contains a subset of the nodes
of the parent partition.

Currently, on the NAS Paragon there are no subpartitionsof .compute or .service. The root
partition (denoted by".") contains all 227 nodes of the Paragon. There are two subpartitions
of the root partition: the compute partition, named .compute, contains 208 nodes to run
parallel applications. The service partition, named .service, contains four nodes devoted to
interactive jobs. The remaining eight nodes are not part of a subpartition and serve as disk
controllers and are connected to the RAID for 110. The four nodes of the service partition
appear as one computer. In summary, the NAS Paragon system has 208 compute nodes, 3
HiPPI nodes, 1 boot node, 8 disk nodes, 4 service nodes of which 1 is a boot node and 4 nodes
are not used at this time, for a total of 227 nodes. When a user logs onto the Paragon, the shell
runs on one of the four service nodes. In the current release of the Paragon OS, processes do
not move between service nodes to provide load balancing. However, the load leveler decides
on which node a process should be started. In principle, partitions and subpartitons may
overlap. For instance, there could be a subpartition called .compute.parti consisting of nodes
0-31 of .compute, and another subpartitioncalled .compute.part2consisting of nodes 15-63 of
.compute. However, in the current release of the operating system on the NAS Paragon, there
are two problems which restrict the use of subpartitions. First, running more than one
application on a node (either two jobs in the same partition or jobs in overlapping partitions)
may cause the system to crash. Second, the existence of overlapping partitions sometimes
causes jobs to wait when they need not. For these two reasons, there are currently no
subpartitions of the .computepartition. All jobs run directly on the .computepartition.

4-17

3. Operating Systems on Paragon

OnNASParagonthefollowingtwooperatingsystemsareavailable.

3.1. Open Software Foundation (OSFIl AD)

~e UNIX operating system was originally designed for sequential computers and is not
very well suited to the performance of massivelyparallel applications. The Paragon operating
system is based upon two operating systems: the Mach system from Carnegie Mellon
University and the Open Software Foundation's OSF/l AD distributed system for
multicomputers [7,8]. The Paragon's operating system provides all the UNIX features
including virtual memory; shell, commandsand utilities;I/O services; and networking support
for ftp, rpc and NFS. Each Paragon node has a small microkemel irrespective of the role of
the node in the system. The Paragon operating system provides programming flexibility
through virtual memory. In theory, virtual memory simplifies application development and
porting by enabling code requiring large memory to run on a single compute node before
being distributed across multiple nodes. The applicationruns in virtual memory which means
that each process can access more memory than is physically available on each node. At NAS,
OSF/l AD runs on 144 compute nodes and on all service nodes.

The Paragon OS used in this study is version Rl.l. and the Fortran compiler is 4.1 [Intel
1994]. The compiler options used are the f77 -04 -Mvect -Knoieee abc.f -lkmath and the
compilation was done on the service node. There is a compiler option by which one may set
the size of the portion of the cache used by the vectorizer to number bytes. This number must
be a multiple of 16, and less than the cache size 16384of the microprocessor i860 XP. In most
cases the best results occur when number is set to 4096, which is the default. In view of this
we decided to choose the default size 4 KB and the highest optimization level of 4 was used.
This level of optimization generates a basic block for each Fortran statement and scheduling
within the basic block is performed. It does perform aggressive register allocation for
software pipelined loops. In addition,code for pipelined loops is scheduled several ways, with
the best way selected for the assembly file. The option -Knoieee was used, which produces a
program that flushes denormals to 0 on creation (which reduces underflow traps) and links in
a math library that is not as accurate as the standard library,but offers greater performance.
This library offers little or no support for exceptional data types such as INF and NaN, and
will not trap on such values when encountered.If used while compiling, it tells the compiler to
perform real and double precision divides using an in-line divide algorithm that offers greater
performance than the standard algorithm.This algorithm produces results that differ from the
results specifiedby the IEEE standardby no more than three units in the last place (ulp).

3.2. SUNMOS

The chief drawbacks of OSF/l AD are (a) OSF/l AD takes about 8 MB of memory on each
node of the Paragon, (b) messages can be sent at a bandwidth of 30-35 MB per second
compared to 200 MB per second peak advertised rate, (c) latencies are of the order of 120
microseconds using Intel NX calls under OSF/l AD [Zajcew 1993;Loeppere 1993]. All these

5.17

n_-_n-n-

- - n - n- -n n- - --- - -

drawbacks can be minimized by using a new operating system called Sandia University of
New Mexico Operating System (SUNMOS) [Maccabe et al. 1993; McCurley 1993].
SUNMOS was originally developed and ported to nCUBE-2 in 1991. SUNMOS was ported
to Intel Paragon in 1993. SUNMOS takes only 250 KB of memory on each node of the
Paragon and can send messages at bandwidth of 170 MB per second with latencies of 70
microseconds. However, SUNMOS does not provide a complete implementation of Intel's
NX message-passing library. It only supports hostless programs and does not support host-
node programs. In addition to these limitations, SUNMOS has very limited support for I/O
and absolutely no support for parallel I/O. NAS Paragon runs SUNMOS on 64 compute nodes
and these nodes do not appear under the compute partition. Furthermore, jobs running under
SUNMOS get a fixed amount of heap, stack, and communication space at load time.
SUNMOS does not support virtual memory Figure 1 shows the typical installation of
SUNMOS on Paragon. SUNMOS runs only on the compute nodes. Comparative performance
of operating systems OSF/l AD and SUNMOS is given in Table 1. It is possible to run
SUNMOS either on all the compute nodes or on a subset of them. One may not notice any
difference when SUNMOS is running on part of compute nodes and OSF/l AD running on
the remaining compute nodes other than the fact that there are fewer compute nodes in the
compute partition. SUNMOS never runs on the service nodes of the service partition.

3.2.1. The utility YOn

When SUNMOS runs on part of the compute nodes, a program called yod also runs on the
service node/nodes allocated to compute partition running SUNMOS. It is illustrated in
Figure 2. The utility yod [Maccabeet al. 1993] is used to allocate a partition of the SUNMOS
to a portion of the mesh and load the executable. This utility runs in the service partition and
handles all requests from the SUNMOS compute nodes that it controls. Aborting a job under
control of yod by KILL -9 leaves the nodes allocated and pr the use of these nodes in
subsequent runs until the system is rebooted. Among others, there are three arguments to yod
which need careful attention. These are comm, heap and stack. The argument stack reserves
the space for stack. In many examples studied, inadequate allocation of stack gave run time
errors and the benchmark could not be run. The switch comm sets aside space that is used for
buffering messages for which no receive has been posted. The default size for comm is 256
KB. If the communication buffer overflows during execution of the application it causes an
unrecoverable error and sometimes the system hangs and needs to be rebooted. The argument
heap reserves the space for heap. The default is to allocate the remaining memory left on each
node after the comm, stack, program (text and data) and OS space have been allocated.
Currently, the size of the heap cannot be more than 16 MB. When the application needs more
than 16 MB per node, specifying the heap to be 16 MB will not run the application and gives
the message that not enough space is available for running the application and sometimes the
system hangs and needs to be rebooted. The argument heap reserves the space for heap. The
default is to allocate the remaining memory left on each node after the comm, stack, program
(text and data) and OS space have been allocated. Currently, the size of the heap cannot be
more than 16 MB. When the application needs more than 16 MB per node, specifying the

6.17

heap to be 16 MB will not run the application and gives the message that not enough space is
available for running the application. The application can be still run up to 25 MB per node if
the heap argument is not used. Occasionally,the applicationhangs or the system crashes. The
application always hangs the system or crashes it if the application needs more than 25 MB
per node. To run the application successfullyone has to be extra careful in allocating heap and
a stack.

3.2.2. The utility FYOD

fyod is a utility that starts a SUNMOSfile server [Maccabeet al. .1993].Typically,it runs on
an I/O node with a disk attached to it in the service partition. All input/output for an
application is routed through yod utility.The purpose offyod is to remove this bottleneck and
distributes the work load among several I/O nodes in the service partition. The use of fyod is
transparent to the user. It improves the performance of applications that write to many files
simultaneously

SUNMOS can run under three modes:

(a) mode 0: Second processor is not used.
(b) mode 1: Second processor is used as a communicationprocessor.
(c) mode 2: Second processor is used for computation.

4. Applications used

4.1. BLAS

BLAS 1, 2 and 3 are the basic building blocks for many scientific and engineering
applications. For example, the dot product (BLAS 1) is a basic kernel in Intel's ProSolver
Skyline Equation Solver (ProSolver-SES)[Intel 1991b], a direct solver using skyline storage,
useful for performing Finite Element Structural analysis in designing aerospace structures.
BLAS 3 (matrix-matrix) kernels are basic kernels in Intel's ProSolver Dense Equation Solver
(ProSolver-DES) [Intel 1992], a direct solver that may be applied in solving computational
electromagnetics (CEM) problems using Method of Moments (MOM).BLAS 2 and BLAS 3 are
basic kernels in LAPACK [Anderson 1992]. In the present paper, we have used a BLAS 3
routine called DGEMM to compute C =A*B, where A and B are real general matrices. The
DGEMM is a single node assembly coded routine [Kuck and Associates 1992] and as such
involves no interprocessor communication

4.2. Fast Fourier Transforms

The FFT is a basic tool in various scientific and engineering applications ranging from
artificial intelligence to oil exploration. At NAS, distributed three-dimensionalFFT is used to
solve the Poisson partial differential equation.We have measured the performance of radix-2,
-3 and -5 complex to complex FFT on Paragon.We have used (a) 1-D single node, and (b) 3-
D distributed FFTs to study the impact of data cache usage and scalability issues under OSF
and SUNMOS on Paragon. Intel supplies only radix-2 I-D FFTs on Paragon [Kuck and

7- 17

Associates 1992].

4.3. NAS Parallel Benchmarks

The NPB [Bailey et al. 1991, 1993, 1994; Saini and Bailey 1995] were developed to
evaluate the performance of highly parallel supercomputers.One of the main features of these
benchmarks is their pencil and paper specification,which means that all details are specified
algorithmically, thereby avoiding many of the difficulties associated with traditional
approaches to evaluating highly parallel supercomputers. The NPB consist of a set of eight
problems each focusing on some important aspect of highly parallel supercomputing for
computational aerosciences. The eight problems include five kernels and three simulated
computational fluid dynamics (CFD) applications. The implementation of the kernels is
relatively simple and straightforward and gives some insight into the general level of
performance that can be expected for a given highly parallel machine. The other three
simulated CFD applications need more effort to implement on highly parallel computers and
are representative of the types of actual data movement and computation needed for
computational aerosciences. The NPB all involve significant interprocessor communication
with the exception of the EmbarrassinglyParallel (EP) benchmark which involves almost no
interprocessor communication.

4.4. NAS Kernels

This set of computational kernels comes from applications at NASA Ames. It demonstrates
the compiler's ability to vectorize floatingpoint operations as well as processor speed [Bailey
and Barton 1985].

5. Procedure for 1st Run and 2nd Run

It was found that the performance of NPB codes is enhanced by about 30% if they are run
for a second time in a DO loop. Furthermore, the performance of DGEMM was identical for
the first run and second run on a service node but on a compute node the performance of the
second run was about 40% better than the first run. In our numerical results section we will

present results for a first run and a second run of each application. The procedure to obtain
first run and second run for a given application is illustrated in Table 2. In this table, a DO
loop index i running from 1 to 2 is insertedjust before the section of the code we want to time
for benchmark purposes. In this table the first run corresponds to i=l and the second run
corresponds to i=2 as shown in Table2. The overhead in calling the function DCLOCK was
estimated to be about 1.5xlO.6second [Saini and Simon 1993a, 1993b, 1993c, 1994].

6. Results and Discussion

The results were obtained under OSF/l AD 1.1 and SUNMOS S1.1. Figure 4(a) shows the
results for the assembly coded BLAS 3 routine DGEMM for a matrix size of 1024x1024 on
one compute node for the first and second run. The performance is 27 MFLOPS for the first
run and 46 MFLOPS for the second run.

8- 17

--- ---- ------ -uu - ---- ------

The performance obtained by the second run is about 40% better than the performance
obtained by the first run. This degradation in performance is not acceptable since users will
always run their code once. The left of the Figure 4(b) shows the performance of DGEMM on
four compute nodes. The MFLOPS rate has decreased Jrom 27 MFLOPS to about 6
MFLOPS. This problem can be eliminated by using dynamic allocation of memory. The
performance of DGEMM using dynamic allocation of memory is shown on the right side of
Figure 4(b). For details see reference [Saini and Simon 1993a, 1993b, 1993c, 1994]. The
performance of DGEMM as a function of the size of the matrix is shown in Figure 5.
SUNMOS results are about 5% better than correspondingOSF results probably due to a better
memory access mechanism. However,under SUNMOS,for a matrix size larger than 1024 the
system either hangs or crashes and, therefore, results could not be obtained. Under OSF we
could run our matrix beyond 32 MB per node but with 40% decrease in performance. Figure
6(a) shows the performance of assembly coded I-D FFT [Kuck and Associates 1992].
Performance is much better when twiddle factors are in cache. The performance is a
maximum at x=512, corresponding to a of 4 KB data cache size. The other peaks reflect
higher harmonics at multiple of 512. Figures 7(a) and 7(b) are similar to Figure 6 but are for
Fortran coded 1-D FFT. Notice that the performance does not decrease after x=512 but
remains constant due to better cache management Also Fortran coded I-D FFI' is for radix-2,
-3 and -5 whereas assembly coded 1-D FFT supplied by the Intel and used in Figure 3 is
radix-2. Figure 8(a) shows the performance of NPB under OSF for 128 nodes. Performance is
under 1 GFLOPS except for benchmarks EP,FT and BT.The benchmark EP involves almost
no communication. The kernel FT uses assembly coded 1-D FFI' and BT uses an assembly
coded block tridiagonal solver for most of the computations. Figure 8(b) shows the
performance in MFLOPS per node for NPB. The average performance is about 5 MFLOPS
except for EP,FT and BT for the same reasons as discussed before. High performance of FT
(9 MFLOPS) and BT (10 MFLOPS) is due to the use of assembly coded routines.

Figure 9(a) shows the performance in MFLOPS of 3-D FFI' as a function of the number of
compute nodes for a fixed problem size of 256x256x128. Under OSF, performance does not
scale, whereas under SUNMOS it seems to scale because of higher communication
bandwidth. Figure 9(b) shows the performanceof 3-D FFI' as a function of the size of the FFI'
for a fixed system size (128 nodes) for OSF and SUNMOS. Here also the scalability under
SUNMOS is better than OSF/l AD.

7. Conclusions:

In SUNMOS,loading of data from memory to the processor is much faster than under OSP.
This is clearly shown by the better performanceof the first iteration of the I-D FFI' kernel.

In SUNMOS, one can not use more than 24 MB of memory per node although SUNMOS
needs only 250 KB of memory per node. This means that on a 32 MB per node Paragon about
7.5 MB memory is wasted due to the hardwareproblem.

In SUNMOS, there is no paging effect, i.e., performance of the first iteration and the second
iteration are always the same. Under OSF, the dynamic allocation of memory enhances the

9-17

u_- - u nu__u__-----

performance of applications.

In SUNMOS, there is no virtual memory. Even in the absence of the Paragon's hardware
problem, the maximum memory per node that can be utilized by the application will never
exceed 31.5 MB. Currently,using 24 MB per node hangs or crashes the system.

In SUNMOS, to run the application successfullyeither for a fixedproblem size and varying
number of nodes or for a fixed number of nodes and varying size problem, one has to adjust
some or all of the following: (a) the size of the communication buffer, (b) the size of the heap,
(c) the size of the stack. Choosing anyone of them incorrectly either hangs or crashes the
system or causes the system to be unusable until it is rebooted.

In SUNMOS, the performance of the applications is generally (but not always) better than
that under OSP.

In SUNMOS, some enhancement of the applications' performance is attributed to the
ability of SUNMOS to allocate the user's partition as close to a "square" as possible.

On 128 nodes of the Paragon, only two NPB codes (FT and BT) exhibit performance of
more than 1 GFLOPS. This high performance is due to use of optimized assembly routines for
the 1-DFFTin Ff benchmark and block tridiagonal solver in BT benchmark.

For most of the NPB codes the performance is less than 5 MFLOPS per node, except for
that of EP, Ff and BT. The high performance of 12 MFLOPS for EP is due to it's having
almost no communication. Message passing is used only to collect the results from different
nodes. The use of optimized assembly routines (l-D FFT in benchmark Ff and block
tridiagonal solver in BT) enhance the performance.

In OSF, the 3-D FFT kernel does not scale as the number of nodes are increased from 32 to
256.

8. Acknowledgment:

The authors wish to thank ThanhPhung of Intel SSD for useful discussions.

10- 17

-- - -- _n "_n_. n__un_- - - - -- - ----

References

Anderson, E. et al. 1992.LAPACK Users' Guide, SIAM, Philadelphia.

Bailey, D. H., and Barton,J. 1985.The NAS Kernel BenchmarksProgram, Report No. 86711,
NASA Ames Research Center (August).

Bailey, D. H., et al., 1991. The NAS Parallel Benchmarks,TechnicalReport RNR-91-02,
NASA Ames Research Center, MoffettField, California.

Bailey,D. H., et al. 1993.The NASParallel BenchmarkResults, IEEE Parallel & Distributed
Technology (February) 43-51.

Bailey, D. H., et al. 1994. The NAS Parallel BenchmarkResults 3-94,TechnicalReport
RNR-94-06, NAS Ames Research Center,Moffett Field, California.

Kuck and Associates, 1992. CLASSPACK,Basic Math Library User's Guide, ReI. 1.3.

Intel, Corporation, 1991a. Overviewof the i860TMXP SupercomputingMicroprocessor.

Intel, Corporation, 1991b. iPSC/860ProSolver-SESManual (May).

Intel, Corporation, 1992. iPSCl860ProSolver-DESManual (March).

Intel, Corporation, 1994.Paragon OSFIl User Guide.

Loeppere, K. 1993. OSF Mach: Kernel Principles, Open Software Foundation and Carnegie
Mellon University (February).

Maccabe, B., McCurley,K.S., andRissen, R. 1993.SUNMOSfor Intel Paragon: A Brief
User Guide (November).

McCurley,K.S. 1993. Intel NX compatibilityunder SUNMOS,Sandia National Laboratories,
Albuquerque, TechnicalReport No. SAND 93-2618 (November).

Saini, S., and Simon, H. D. (1993a).Performance ofBLAS and NAS Parallel Benchmarkson
NAS Intel Paragon XP/S-15, Proc. of Intel SupercomputingUser's Group (October).

Saini, S., and Simon, H. D. (1993b).Performance ofBLAS 1,2 and 3 on NAS Intel Paragon
XP/S-15, Proc. of Scalable ParallelLibraries ConferenceIEEE (October).

Saini, S., and Simon, H. D. (1993c),Enhancing ApplicationsPerformance on Intel Paragon
through Dynamic Memory Allocation,Report RNR-93-017 (November) NAS Systems
Division, NASA Ames Research Center,MoffettField, CA 94035, USA.

Saini, S., and Simon, H. D. (1994).ApplicationsPerformanceUnder OSF/l AD and
SUNMOS on Intel Paragon XP/S-15,Proc. Supercomputing '94 (November).

Saini, S., and Bailey, D. H. 1995.NASParallel BenchmarkResults 3-95. Availableas NAS
TechnicalReportNAS-95-011(April)on http: j jwww .nas . nasa. gov jNASjNPBj

Zajcew, R., et al., 1993. An OSF/l Unix for MassivelyParallel Multicomputers,Proc. Winter
USENIX Conf., pp. 37-55 (January).

11-17

Compute partition
."."".."".."..."'" '.'.. ...' ..'.."...

II\I<:!I
III
IIII~IID

..' ..'"""..'."

~
...........

i~lii~

II1II

.' .

I
I
I
~ SUNMOSrunningoneachcomputenode

~ OSF/l ADrunningoneachservicenode

Service partition

Figure 1. Typical use of SUNMOS on Paragon.

Microkemel
MACH3.0

Figure 2. Typical service node when SUNMOSis running on compute nodes.

12-17

Figure 3. Typical I/O node when SUNMOS is running on compute nodes.

Table 1: Procedure for obtaining first run and second run.

PROGRAM abc

DO i = 1, 2
to = DCLOCK()
tl = DCLOCK
CALL DGEMM(,.. .,...)
t2 = DCLOCK ()
time = t2 - (tl - to)

ENDDO

END

13-17

Table 2: Comparative performance of operating systems OSF/I AD and SUNMOS.

14-17

Operating System
Features

OSF/l AD SUNMOS

Microkemel 5MB 0.25 MB

Server 3 MB on compute node None

Memory for application 24 MB per node 31.75 MB per node

Virtual memory Yes No

Latency 120micro seconds 70 microseconds

Bandwidth 35 MB per second 170MB per second

I/O-READ 8 MB per second 2 MB per second

I/O -WRITE II MB per second 3 MB per second

Support Intel Sandia Nat. Laboratories

Technology Mixture of OSF, LOCUS and Sandia National Laborato-
Intel ries and Univ. of New Mex-

ico

Reliability 3 crashes per day Undetermined

Allocation of heap and stack By OSF/l AD By the user

Tillle sharing Yes No

Nodes on which runs Compute & Service nodes Only on compute nodes

Parallel file system Yes No

Availabilityof debugger Yes No

Reliability of results High Intermittently wrong
results if more than 16 MB
per node is used

Functionality High Low

Memory bandwidth Low High

Scalability Low High

Applications performance Low Moderate

50

451-..

401-...

351-.......

FirslR1l\ SecondRm

Figure 4(a). DGEMM on 1node under OSR

~30
9
LL
::E 25

..9-. ~. ~ :-~-:.. -.: .-~~. ~.~...~...~...~. ~."
,..

1
1

./. . .

f:
" .,.,..

"j"""""""""""'"

I "'............

50

45

40

35

20

15

10

50 200

,.,

400 600
Matrix Size

50 50

45t................................

401-................................

351-.....................................

30"",,,,,,,,,,,,,,,,,,,,,,,,,,,

rD
II.

~25
~

20

151-:11..ill'I':I.jlillll'I~:I,.:II:IIIIII='. '11'1111'1111.

1o~:~~li!liilli . ,I:I:::I~'~III. .jilllljllllill.. ~:illlllllli!,

jllll lIB
0123 0123

Figure 4(b). DGEMM on 4 nodes under OSF-
static versus dynamic memory allocation.

1-...........

10.

'j'
I
I

.." .., ... , .,.". ':-"1

., :-.'

.",.. .., .." .",.. ", .,... ..,..: ,~,', "'." ...~

'~\ , 1.. . , '\r' \.,..

,. ..".,.. .".. .,. ..", ...

',." ..,.. ,... ' , ..'

..................

800 1000 1201

Figure 5. MFLOPS Vs. Size of the matrix. -' -' - SUNMOS; - - - -Ist iteration (dynamic allocation),
- 2nd iteration (dynamic allocation). Both 1st and 2nd iterations are under OSF.

15 - 17

50

401-........

30r
II)
a.
0
oJ
II.
:l

201-....

I~---'..;:
I

I
.../...

I
I

I
I

I
I

I
..1.

I
I

I
I

I
~

~~

101-.

0
10' 102 103

Lenglh

104

Figure 6(a). I-D FFT, - - - first iteration; - second
iteration; both are assembly codes under OSP.

81-....

7"""'"''''''

, '
,--~ "

I '
'I'" .,-.

6-""

f5'-''''''

9II.
~4-'

31-.

1~" ,.......
I

-'~-
a' --- ,
10' 1if 103

ls1gth

10' 1~

Figure 7(a). I-D FFT, - - - first iteration, - second

iteration; both are Fortran under OSF.

105

50

451-.

40-

351-.

~30I-'"''''''''

9
II.
~251-

201-

10

106
5
10' 105lit 103 10'

Length

Figure 6(b). I-D FFT, - - - first iteration; - second
iteration; both are assembly coded under SUNMOS.

B-

7-'

6-.

~51-
9
II.
~4-'

1-'

10'
a
10' 1051if 103 10'

Lengh

Figure 7(b). I-D FFT, - - - first iteration, - second

iteration; both are Fortran under SUMOS.

16- 17

106

106

ICUII,

:I
:::::::::::::::::::

1
EP CG Ff BTSPIS LUMG

Figure 8 (a). Performance of NPB under OSF
for 128 nodes.

1400,

1200~'"'''''''''''~''''''' ..

1000~"""'"'' ..' !
:

~ . _.>/.............

~ WJO~""""''''''~/~I
I:

"''''''/l''''''''''''''~''''''''''''''

......................................

.". . .

... . .

"'"''

200'
0 50 100 150 200

_olNodeo
250 300

Figure 9(a). MFLOPS Vs. number of nodes.
- denotes results under OSF,
----denotes results under SUNMOS.

17- 17

EP MG CG BTFf SPIS LU

Figure 8 (b). Performance of NPB under OSF
on one node.

2100

2000~"''''''''''''':''''''''''''''''!'''' : """""'''''''''''''':'''/~''''

1900~'''' ~ ; c .. : ';...~.t. ~............, .
: "

1800~"""" ..., .: ~.~.~.-;Z..

: , >./ ;...
..:...f :......: I :
;' .

15OO~"... :. /.: .:........: ,: .
. , .

14OO~''''''' : ./ ~: ,

~ 1700
[

"'"''''''

:::;1500 .

12Dfs

; .
1300~'"'''''' ...;'.: ;.. . """""""'"'''' .'...

~ .

1.5 2 2.5
l.er9h 01 3D FFT

3.5
.10'

Figure 9(b). MFLOPS Vs.length of3-D FFT.
- denotes results under OSF,
---denotes results under SUNMOS.

